基于DS算法的玉米近红外定性分析光谱校正方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3964/j.issn.1000-0593(2014)06-1533-05

基于DS算法的玉米近红外定性分析光谱校正方法研究

引用
从校正的角度出发,研究了近红外定性分析中模型稳定性问题。以13个玉米品种为研究对象,针对数据采集时间不同带来的模型失效问题,借鉴近红外光谱定量分析中两台仪器间模型传递的思想,将直接模型传递(Direct Standardization)算法用于校正同一仪器不同时间采集的光谱,使得一次建立的品种鉴别模型,能用于其余时间测试数据的鉴别。首先采用Kennard/Stone算法在主光谱集中选取校正样品集,按照对应的编号从从光谱集中取出对应的数据,然后对校正样品集采用DS算法求取两组数据间的变换关系,再对剩余的从光谱集进行相应的变换得到适用于模型的光谱。实验中对比了校正样本数和模型校正位置对校正结果的影响,分别从品种定性鉴别准确性和校正前后主光谱数据和从光谱数据分布距离两方面分析了实验结果。结果表明,该方法能有效地解决同一仪器随着采样时间推移产生的光谱偏移现象,对采样时间不同的测试集均得到较高的识别率,提高了模型的鲁棒性和适用范围,由实验结果可见,校正位置处于特征提取之后时,校正效果最佳。

玉米、近红外光谱、品种鉴别、DS算法、光谱校正

O657.3(分析化学)

中央高校基本科研业务费资助项目JB-ZR1202;引进人才科研启动费项目12Y0316;泉州市级基金项目24201305

2014-07-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

1533-1537

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

2014,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn