基于Adaboost及高光谱的生菜叶片氮素水平鉴别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3964/j.issn.1000-0593(2013)12-3372-05

基于Adaboost及高光谱的生菜叶片氮素水平鉴别研究

引用
为了便于经济合理的生菜施肥,研究一种生菜叶片氮素水平智能鉴别方法。在温室大棚内无土栽培不同氮素水平的生菜样本,在特定生育期,采集各类氮素水平生菜样本,利用FieldSpec R○3型光谱仪采集生菜叶片高光谱数据。由于原始高光谱数据存在噪声且冗余性强,利用标准归一化(SNV)对原始高光谱数据进行降噪处理,再利用主成分分析方法(PCA)对高光谱数据进行特征提取。分别利用K最近邻(KNN)和支持向量机(SVM )对降维后的光谱数据进行分类研究,由于自适应提升法(Adaboost)能提升弱分类器分类性能,将其分别引入到KNN和SVM 两种分类器中,提出了Adaboost-KNN和Adaboost-SVM 两种集成分类算法。分别利用上述四种分类算法对相同测试样本数据进行分类鉴别。结果表明,KNN ,SVM ,Ada-boost-KNN和Adaboost-SVM四种算法的分类正确率分别为74.68%,87.34%,100%和100%,其中所提出的Adaboost-KNN与Adaboost-SVM分类效果都很好,且Adaboost-SVM分类算法的稳定性最好。因此, Adaboost-SVM算法适合作为基于高光谱的生菜氮素水平鉴别的建模方法,并且也为其他作物营养元素无损检测提供了一种新的方法。

高光谱、生菜叶片氮素水平、KNN、SVM、Adaboost

TP73(遥感技术)

国家自然科学基金项目31101082,61075036;江苏高校优势学科建设工程项目PAPD苏政办发2011[6号]

2013-12-10(万方平台首次上网日期,不代表论文的发表时间)

共5页

3372-3376

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

2013,(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn