基于Self-Weight与t-SNE的滚动轴承故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-808X.2022.06.006

基于Self-Weight与t-SNE的滚动轴承故障诊断

引用
针对滚动轴承故障信号非线性、故障特征种类繁多难以准确分类的问题,提出了一种Self-Weigh与t-SNE相结合的解决方法.先用WPT完成对原始故障信号的处理及特征的提取,然后采用Self-Weigh评估每个特征的敏感程度,获取最优特征;再对这些最优特征通过t-SNE进行降维可视化处理,获取低维敏感特征,并将其作为AP传播聚类的输入,从而实现故障类型100%正确识别.采用机械综合模拟实验平台的轴承数据加以验证,并与采用t-SNE、Self-Weigh+PCA方法进行对比,结果体现了所提方法的优势.

自权重、t分布随机近邻嵌入、滚动轴承、故障诊断、特征提取

42

TH133.33

国家自然科学基金;广西自然科学基金项目;广西科技基地和人才专项;广西区研究生创新项目

2023-04-23(万方平台首次上网日期,不代表论文的发表时间)

共5页

463-467

相关文献
评论
暂无封面信息
查看本期封面目录

桂林电子科技大学学报

1673-808X

45-1351/TN

42

2022,42(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn