基于证据理论的知识发现分类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-808X.2004.03.006

基于证据理论的知识发现分类算法

引用
决策树方法是一种重要的可完成分类任务的知识发现技术,目的是通过构造一个分类模型,把数据库中的元组映射到给定类别中的某一个.决策树分类算法效率高且应用广泛,但是不能处理在决策树的构建和分类过程中的不确定数据.针对决策树分类算法的局限,利用证据理论是对概率论的扩展,将置信函数与概率的上下值相联系,可用于不确定数据的表达这个有力工具,把决策树分类技术扩展到含有不确定数据的环境中,提出了D-S决策树分类算法.实验结果表明D-S决策树分类算法能有效的对不确定数据进行分类.

知识发现、决策树、证据理论、信息熵、不确定数据

24

TP301(计算技术、计算机技术)

2004-07-31(万方平台首次上网日期,不代表论文的发表时间)

共5页

27-31

相关文献
评论
暂无封面信息
查看本期封面目录

桂林电子工业学院学报

1673-808X

45-1351/TN

24

2004,24(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn