基于迭代LS-SVM生物氧化提金预处理工艺参数优化算法的研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1004-0676.2012.02.008

基于迭代LS-SVM生物氧化提金预处理工艺参数优化算法的研究

引用
支持向量机(SVM)是一种新的具有优越特性的机器学习算法、最小二乘法支持向量机(LS-SVM)是SVM的一种改进算法,但是直接利用常规的LS-SVM对生物氧化提金预处理工艺参数优化存在着一些问题.通过引入迭代算法和LS-SVM对生物氧化提金预处理工艺参数离线数据进行参数预测相结合完成工艺参数的优化,此方法计算量相对较小,易于掌握,为企业生产提供了一个相对可靠的理论支持.

冶金技术、生物氧化、优化、迭代法、LS-SVM、提金率

33

TP273(自动化技术及设备)

新疆维吾尔自治区自然科学基金资助项目2012211A004

2012-10-29(万方平台首次上网日期,不代表论文的发表时间)

共4页

40-43

相关文献
评论
暂无封面信息
查看本期封面目录

贵金属

1004-0676

53-1063/TG

33

2012,33(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn