基于Sentinel-2数据的干旱区典型绿洲植被叶绿素含量估算
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13866/j.azr.2019.04.17

基于Sentinel-2数据的干旱区典型绿洲植被叶绿素含量估算

引用
以渭干河-库车河绿洲(渭-库绿洲)为研究区,采用在机器学习方面具有明显优势的随机森林回归算法,对绿洲内的4种典型植被(棉花、芦苇、杨树、大枣)叶片的叶绿素相对含量(soil and plant analyzer development,SPAD)进行估算和验证.首先基于“红边”处光谱信息丰富的哨兵2号(Sentinel-2)影像和由其衍生的一阶微分、二阶微分影像各提取23种对叶绿素敏感的宽波段光谱指数,加入3种影响植物生长的土壤参量(土壤含水量,土壤有机质,土壤电导率)作为影响叶片SPAD的特征变量,再根据以上特征变量对每种植被叶片各建立3种方案的SPAD估算模型,从而实现对绿洲内植被叶绿素的监测.结果 表明:①影像经一阶微分再提取的植被指数相比原位光谱植被指数,在SPAD估测模型中起到了更重要的作用,在随机森林算法的重要性排序中位居前列;②4种植被叶片的SPAD估测模型都取得了不错的效果,芦苇叶片尤为显著,确定系数(R2)达到了0.926;③分析对比3种方案下模型预测能力,方案3(包含土壤参量)的预测能力卓越[2.143<相对百分比偏差(RPD)<2.692],其预测能力排序为:方案3>方案1>方案2,土壤属性和模型预测结果有较强的非线性相关.Sentinel-2数据具有理想的估算绿洲植被叶绿素含量的潜力,提供了一种高效、低成本、潜在高精度的方案来估算叶绿素含量,可为干旱区绿洲农业、生态系统实现更有效的保护和管理提供参考.

绿洲、Sentinel-2数据、SPAD、叶绿素、植被指数、随机森林、新疆

36

国家自然科学基金资助项目41771470;新疆自治区重点实验室专项基金资助项目2016D03001;自治区科技支疆项目201591101

2019-08-14(万方平台首次上网日期,不代表论文的发表时间)

共11页

924-934

相关文献
评论
暂无封面信息
查看本期封面目录

干旱区研究

1001-4675

65-1095/X

36

2019,36(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn