10.12118/j.issn.1000-6060.2021.236
哈萨克斯坦北部小麦遥感估产方法研究
以哈萨克斯坦北部雨养耕作区为研究靶区,基于春小麦产量统计数据和遥感光谱指数,开展了春小麦估产最优预测时期及植被指数分析,采用回归分析、随机森林、支持向量机及双向循环神经网络模型估算春小麦产量,并对比分析了不同模型的模拟精度.结果表明:北哈萨克斯坦州、阿克莫拉州和库斯塔纳州2007—2016年春小麦估产的最佳预测时期为6月26日—8月5日,该时期是春小麦产量形成的关键时期.北哈萨克斯坦州春小麦估产最优植被指数为7月12日的绿度叶绿素指数(Green chlorophyll index,CIgreen),阿克莫拉州春小麦估产最优植被指数为8月5日的绿度动态宽波段指数(Green wide dynamic range vegetation index,WDRVIgreen),库斯塔纳州春小麦最优估产植被指数为7月12日的WDRVIgreen.对比分析4种模型模拟春小麦产量的精度,在样本点较少的情况下,双向循环神经网络模型相比其他模型在估算哈萨克斯坦北部三州春小麦产量上精度较高;春小麦产量与植被净初级生产力NPP相关性分析结果显示,北哈萨克斯坦州、阿克莫拉州和库斯塔纳州决定系数R2在0.50以上面积占比分别为44%、94%和77%,表明上述估产模型可应用于哈萨克斯坦北部三州春小麦估产,尤其是阿克莫拉州和库斯塔纳州.
雨养小麦耕作区、遥感估产、植被指数、回归模型、机器学习、哈萨克斯坦北部
45
中国科学院战略性先导科技专项XDA19030301
2022-04-08(万方平台首次上网日期,不代表论文的发表时间)
共11页
488-498