基于支撑向量回归的二端元混合像元分解
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于支撑向量回归的二端元混合像元分解

引用
针对遥感影像混合像元光谱复杂,其非线性特征,传统LSMM分解模型难以进行有效的混合像元分解的不足.通过基于SVR的二端元混合像元分解的研究,从真实遥感影像上获取典型的植被、非植被光谱信息,构造二端元混合光谱库,进行SVR模型的混合像元分解.当样本量为6%时,交叉验证获得最佳模型参数(C=1024.0和g=4.0),进一步对全部混合像元进行混合像元分解.实验结果表明:SVR分解结果RMSE为5.95,R2为0.958,优于LSMM方法(RMSE=7.71,R2=0.932),且在各个不同真值丰度下具有更好的稳定性,证明该方法对于非线性混合光谱具有很好的学习和推广能力.此外,该方法的精度不随训练样本量的增加呈明显变化,体现出SVR在有限样本情况下能够保证高效率的训练能力.

SVR、LSMM、非线性、混合像元分解

38

TP753(遥感技术)

国家自然科学基金40871194

2015-05-25(万方平台首次上网日期,不代表论文的发表时间)

327-333

相关文献
评论
暂无封面信息
查看本期封面目录

干旱区地理

1000-6060

65-1103/X

38

2015,38(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn