基于支撑向量回归的二端元混合像元分解
针对遥感影像混合像元光谱复杂,其非线性特征,传统LSMM分解模型难以进行有效的混合像元分解的不足.通过基于SVR的二端元混合像元分解的研究,从真实遥感影像上获取典型的植被、非植被光谱信息,构造二端元混合光谱库,进行SVR模型的混合像元分解.当样本量为6%时,交叉验证获得最佳模型参数(C=1024.0和g=4.0),进一步对全部混合像元进行混合像元分解.实验结果表明:SVR分解结果RMSE为5.95,R2为0.958,优于LSMM方法(RMSE=7.71,R2=0.932),且在各个不同真值丰度下具有更好的稳定性,证明该方法对于非线性混合光谱具有很好的学习和推广能力.此外,该方法的精度不随训练样本量的增加呈明显变化,体现出SVR在有限样本情况下能够保证高效率的训练能力.
SVR、LSMM、非线性、混合像元分解
38
TP753(遥感技术)
国家自然科学基金40871194
2015-05-25(万方平台首次上网日期,不代表论文的发表时间)
327-333