基于NNARMAX模型的地下水位预报研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-3317.2002.04.013

基于NNARMAX模型的地下水位预报研究

引用
区域地下水系统是-个受多种因素影响的复杂的非线性动态系统,应用遗忘因子的递归最小二乘(RLS)算法进行训练,采用通过减少网络节点间的连接权值,进而载减冗余节点来选择适宜的网络拓扑结构,建立了非线性自回归滑动平均神经网络(NNARMAX)模型,地下水位预报结果表明:通过对网络结构的优化达到了自动确定非线性自回归模型阶数和影响因素的选择,能有效地表示区域地下水动态系统内部及其外部诸多影响因素间的不确定关系,是预测区域地下水动态变化较为有效的方法之一.

递归最小二乘法、结构优化、非线性、自回归、滑动平均、神经网络、地下水位、预测

21

S273(农田水利)

国家高技术研究发展计划863计划2001AA242051

2004-01-08(万方平台首次上网日期,不代表论文的发表时间)

共4页

49-52

相关文献
评论
暂无封面信息
查看本期封面目录

灌溉排水

1672-3317

41-1337/S

21

2002,21(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn