10.7517/j.issn.1674-0475.2015.02.161
基于主成分分析的彩色扫描仪光谱特性化
为了实现扫描仪在不同光源、不同观察者条件下准确获取颜色信息,最大程度的避免同色异谱现象,本文采用光谱的方法对扫描仪进行特性化处理,通过多项式回归和BP神经网络分别与主成分分析法结合,首先对检测样本的光谱反射率进行主成分分析,提取主成分与主成分系数,通过实验得到主成分系数与多项式回归、BP神经网络结构之间的转换模型,实现了扫描仪低维RGB信号对原始光谱反射率信息的重构,进而实现扫描仪的光谱特性化.实验结果表明,多项式项数为19项时,达到训练样本的均方根误差为1.7%,检测样本的均方根误差为1.9%.而包含15个隐层节点的单隐层BP神经网络结构为比较合理的网络结构,达到训练样本的均方根误差为1.3%,检测样本的均方根误差为1.5%.对彩色扫描仪的特征化处理,采用多项式回归法得到光谱特性化精度较低,采用BP神经网络模型能够实现更高的光谱特性化精度.
彩色扫描仪、光谱特征化、多项式回归、BP神经网络、主成分分析
33
U49;TN9
2015-05-04(万方平台首次上网日期,不代表论文的发表时间)
共7页
161-167