基于iHDODC-LinkNet网络的遥感图像道路提取方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16136/j.joel.2024.01.0553

基于iHDODC-LinkNet网络的遥感图像道路提取方法

引用
遥感图像的道路提取在推动城乡发展规划及建设方面具有重要意义.然而,目前传统方法对于遥感图像道路提取存在工程量大、效率低下的问题,基于深度学习的方法又存在复杂场景下提取精度不高和连通性差等问题.针对上述存在的问题,为提高不同地貌区域的道路提取精度,本文提出一种基于iHDODC-LinkNet网络的高分辨率遥感图像道路提取方法.该方法在语义分割模型D-LinkNet的基础上进行改进:一方面使用ResNeSt50重建D-LinkNet网络并添加预训练模型,提出一种混联深度过参数化扩张卷积(hybrid depthwise over-parameterized dilated convolu-tion,HDODC)模块;另一方面采用迭代注意力特征融合(iterative attentional feature fusion,iAFF)机制替换原始的相加融合,从而使模型关注于道路的全局信息.最后,在马萨诸塞州道路数据集和某省高速公路场景数据集上进行训练并通过测试集的提取效果证明模型改进方法的有效性.根据实验模型分割效果表明,改进后的方法在测试集上F1达到71.66%,相比原始模型提升了10%,能够得到效果更好的分割结果.

语义分割、连通性、混联深度过参数化扩张卷积(HDODC)、注意力特征融合

35

TP391(计算技术、计算机技术)

山西省交通建设科技项目2019-2-8

2024-04-01(万方平台首次上网日期,不代表论文的发表时间)

共8页

51-58

相关文献
评论
暂无封面信息
查看本期封面目录

光电子.激光

1005-0086

12-1182/O4

35

2024,35(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn