基于卷积神经网络的随机因子重采样图像检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16136/j.joel.2023.03.0263

基于卷积神经网络的随机因子重采样图像检测

引用
图像重采样检测是图像取证领域的重要任务,其目的是检测图像是否经过重采样操作.现有的基于深度学习的重采样检测方法大多只针对特定的重采样因子进行研究,而较少考虑重采样因子完全随机的情况.本文根据重采样操作中所涉及的插值技术原理设计了一组高效互补的图像预处理结构以避免图像内容的干扰,并通过可变形卷积层和高效通道注意力机制(efficient channel attention,ECA)分别提取和筛选重采样特征,从而有效提高了卷积神经网络整合提取不同重采样因子的重采样特征的能力.实验结果表明,无论对于未压缩的重采样图像还是JPEG压缩后处理的重采样图像,本文方法都可以有效检测,且预测准确率相比现有方法均有较大提升.

图像取证、重采样检测、可变形卷积、高效通道注意力(ECA)、卷积神经网络

34

TP391(计算技术、计算机技术)

国家自然科学基金;上海市自然科学基金资助项目

2023-05-04(万方平台首次上网日期,不代表论文的发表时间)

共9页

232-240

相关文献
评论
暂无封面信息
查看本期封面目录

光电子.激光

1005-0086

12-1182/O4

34

2023,34(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn