基于人工蜂群算法的支持向量机参数优化及应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于人工蜂群算法的支持向量机参数优化及应用

引用
为了解决常用的支持向量机(SVM)参数优化方法在寻优过程不同程度的陷入局部最优解的问题,提出一种基于人工蜂群(ABC)算法的sVM参数优化方法。将SVM的惩罚因子和核函数参数作为食物源位置,分类正确率作为适应度,利用ABC算法寻找适应度最高的食物源位置。利用4个标准数据集,将其与遗传(GA)算法、蚁群(ACO)算法、标准粒子群(PS0)算法优化的sVM进行性能比较,结果表明,本文方法能克服局部最优解,获得更高的分类正确率,并在小数目分类问题上有效降低运行时间。将本文方法运用到计算机笔迹鉴别,对提取的笔迹特征进行分类,与GA算法、AC0算法、PS0算法优化的SVM相比,得到了更高的分类正确率。

人工蜂群(ABC)算法、支持向量机(SVM)、参数优化、优化算法

23

TP181(自动化基础理论)

国家科技支撑计划资助项目2009BA171B02;河北省科技支撑计划资助项目10213565

2012-04-28(万方平台首次上网日期,不代表论文的发表时间)

374-378

相关文献
评论
暂无封面信息
查看本期封面目录

光电子.激光

1005-0086

12-1182/TN

23

2012,23(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn