基于快速l1-范数稀疏表示和TGV的超分辨算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12086/oee.2019.180499

基于快速l1-范数稀疏表示和TGV的超分辨算法研究

引用
针对光学相机成像分辨率低、噪声干扰严重等问题,本文提出一种能有效去噪的高精度超分辨方法—基于快速l1-范数稀疏表示和二阶广义全变分(TGV)的超分辨方法.首先利用各向异性扩散张量(ADT)作为边缘高频信息,通过快速l1-范数稀疏表示方法建立LR图像和相对应的高频信息ADT的字典集;其次将字典学习到的ADT边缘信息和TGV模型组合成新的规则项;最后利用新的规则项建立超分辨代价函数,并利用图像增强后处理方法对整幅图像进行优化.结果表明:算法对仿真数据和SO12233靶标数据具有较高的可行性和鲁棒性,能有效去除噪声等异常点,获得高质量清晰图像,同时与其他经典算法相比,所提算法超分辨的峰值信噪比和结构相似度均有所增大.

光学相机、超分辨、二阶广义全变分、快速稀疏表示、各向异性扩散张量

46

TP751.1(遥感技术)

国家自然科学基金资助项目61877053;浙江省教育厅一般科研资助项目Y201840087

2019-12-09(万方平台首次上网日期,不代表论文的发表时间)

共12页

26-37

相关文献
评论
暂无封面信息
查看本期封面目录

光电工程

1003-501X

51-1346/O4

46

2019,46(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn