基于多尺度特征损失函数的图像超分辨率重建
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12086/oee.2019.180419

基于多尺度特征损失函数的图像超分辨率重建

引用
在图像超分辨率重建问题中,许多基于深度学习的方法大多采用传统的均方误差(MSE)作为损失函数,重建后的图像容易出现细节模糊和过于平滑的问题.针对这一问题,本文对传统的均方误差损失函数进行改进,提出一种基于多尺度特征损失函数的图像超分辨率重建方法.整个网络模型由基于DenseNet的重建模型和一个用来优化多尺度特征损失函数的卷积神经网络串联构成.将重建后得到的图像和对应的原始高清图像作为串联的卷积神经网络的输入,计算重建图像卷积得到的不同尺度特征图与对应的原始高清图像卷积得到的不同尺度特征图的均方误差.实验结果表明,本文提出的方法在主观视觉效果和PSRN、SSIM上均有所提升.

图像超分辨率重建、稠密卷积神经网络、多尺度特征损失函数、深度学习

46

TP391.41(计算技术、计算机技术)

国家自然科学基金资助项目61471212;浙江省自然科学基金资助项目LY16F010001

2019-12-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

1-9

相关文献
评论
暂无封面信息
查看本期封面目录

光电工程

1003-501X

51-1346/O4

46

2019,46(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn