基于梯度的多输入卷积神经网络
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-501X.2015.03.006

基于梯度的多输入卷积神经网络

引用
深度学习已成为目前机器学习领域的研究热点,卷积神经网络是深度学习的重要组成。以卷积神经网络为基础,结合自动编码提取特征中的边缘特性,采用多方向梯度信息作为边缘信息的基本表达,并以此作为卷积神经网络的多源输入数据,提出了一种具有多个输入层的卷积神经网络结构。以手写字符识别和行人检测为例,通过实验表明,梯度信息多输入网络与经典卷积神经网络相比,具有更高的识别率,且在训练次数少的情况下优势更为明显,同时也证明在适度预处理的条件下多输入卷积神经网络能够获得更好的效果。

深度学习、卷积神经网络、多输入、梯度

TP139.41(自动化基础理论)

国家自然科学基金61472444,61472392

2015-04-03(万方平台首次上网日期,不代表论文的发表时间)

共6页

33-38

相关文献
评论
暂无封面信息
查看本期封面目录

光电工程

1003-501X

51-1346/O4

2015,(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn