Bagging偏最小二乘和Boosting偏最小二乘算法的金银花醇沉过程近红外光谱定量模型预测能力研究
建立金银花醇沉过程中稳健的近红外光谱( Near infrared spectroscopy,NIR)定量模型,为金银花醇沉过程的快速评价提供方法。研究基于金银花醇沉过程绿原酸的 NIR 数据,通过建立 Bagging 偏最小二乘(Bagging-PLS)模型、Boosting偏最小二乘(Boosting-PLS)模型与偏最小二乘(Partial Least Squares,PLS)模型,实现对模型性能比较;在此基础上,采用组合间隔偏最小二乘法( Synergy interval partial least squares,siPLS)和竞争自适应抽样( Competitive adaptive reweighted sampling,CARS )法分别对光谱进行变量筛选,建立模型,实现了对模型预测性能的考察。实验结果表明, Bagging-PLS和Boosting-PLS(潜变量因子数设为10)的预测性能均优于 PLS 模型。在此基础上,两批样品采用 siPLS 筛选变量,第一个批次金银花筛选波段820~1029.5 nm和1030~1239.5 nm,第二个批次金银花醇沉筛选波段为820~959.5 nm和960~1099.5 nm;采用CARS方法变量筛选,两批样品分别选择5折交叉验证和10折交叉验证,取交叉验证均方根误差( RMSECV)值最小的子集作为最终变量筛选的结果。经过变量筛选的两批金银花醇沉过程中的绿原酸含量Bagging-PLS和Boosting-PLS模型的预测均方根误差(RMSEP)值降低了0.02~0.04 g/L,预测相关系数提高了4%~5%。综上,Baggning-PLS和Boosting-PLS算法可作为金银花醇沉过程NIR定量模型的快速预测方法。
过程分析技术、金银花、醇沉、Bagging偏最小二乘算法、Boosting偏最小二乘算法
O24;O65
国家自然科学基金项目81303218;高等学校博士学科点专项科研基金No.20130013120006资助This work was supported by the National Natural Science Foundation of China81303218;the Special Research Foundation for the Doctoral Program of Higher Education20130013120006
2014-11-26(万方平台首次上网日期,不代表论文的发表时间)
共8页
1679-1686