基于深度学习模型对乳腺X线摄影中乳房密度分类的初步研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13609/j.cnki.1000-0313.2021.11.011

基于深度学习模型对乳腺X线摄影中乳房密度分类的初步研究

引用
目的:探索基于深度学习对乳腺X线密度(MD)进行分类的可行性.方法:回顾性分析2018年9月-12月本院行双侧乳腺X线摄影检查的305例连续资料,共1220个图像数据.由两位影像诊断医师挑选其中合格的数据分别进行乳腺密度的分类训练.由两位医师根据第5版乳腺影像报告和数据系统(BI-RADS)中X线MD分型(a、b、c、d)标准对1220个图像进行分类.将上述随机分训练集(train set,n=966)、调优集(validation set,n=128)和测试集(test set,n=126),采用AutoVGG网络训练分类预测模型,以测试集的混淆矩阵评价模型的效能.在模型预测的四分类基础上,将MD进行二分类,即:非致密组(a型和b型)和致密组(c型和d型),评价模型二分类预测的效能.结果:测试集的126个数据的预测符合率为0.83,a、b、c、d各型预测符合率分别为0.88、0.78、0.80和0.76.将MD分为致密组和非致密组时,非致密组精确度(precision)为0.90,召回率(recall)为0.74,F1值为0.81;致密组精确度为0.86,召回率为0.84,F1值为0.85.结论:采用深度学习方法进行乳腺X线摄影MD二分类是可行的,有望在临床工作中应用.

深度学习;乳腺X线摄影;乳腺密度;结构式报告

36

R816.42;R-05(放射医学)

2022-01-04(万方平台首次上网日期,不代表论文的发表时间)

共5页

1391-1395

相关文献
评论
暂无封面信息
查看本期封面目录

放射学实践

1000-0313

42-1208/R

36

2021,36(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn