基于CT影像组学模型鉴别头颈部良、恶性淋巴结
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13609/j.cnki.1000-0313.2021.08.004

基于CT影像组学模型鉴别头颈部良、恶性淋巴结

引用
目的:探讨CT影像组学模型在头颈部淋巴结良恶性鉴别诊断中的应用价值.方法:回顾性分析2010-2019年本院经病理或穿刺活检方法证实为良性或恶性淋巴结的200例患者的临床和C T资料,其中良性组105例,恶性组95例.将全部患者随机分为训练集(133例)和测试集(67例),运用Mazda软件提取淋巴结的CT影像组学特征,使用LASSO方法降维后,建立影像组学标签(score).基于有鉴别意义的变量,包括临床指标及淋巴结短径(Size)、增强动脉期CT值(Z)和影像组学标签等,采用多因素Logisitc回归分析,分别建立基于影像组学和非影像组学(Size+Z)的预测模型,使用校准曲线观察两种模型的拟合情况.结果:经过特征降维后,将获得的S(2,-2)Correlat、S(0,3)InvDfMom和S(4,0)Contrast这3个影像组学特征用于建立影像组学标签,其在训练集和测试集中鉴别良恶性淋巴结的AUC分别为0.884和0.749.经Logistic回归法建立的影像组学预测模型在训练集和测试集中的AUC(分别为0.958和0.908)均大于非影像组学预测模型(分别为0.847和0.806),差异均有统计学意义(P<0.05),且两种模型的校准曲线与理想曲线显示出良好的拟合效果.结论:CT影像组学模型在头颈部淋巴结良恶性的鉴别诊断中具有一定的应用价值.

头颈部;淋巴结转移;体层摄影术,X线计算机;影像组学

36

R814.42;R733.4(放射医学)

2021-08-27(万方平台首次上网日期,不代表论文的发表时间)

共6页

965-970

相关文献
评论
暂无封面信息
查看本期封面目录

放射学实践

1000-0313

42-1208/R

36

2021,36(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn