我国信用债个体违约风险测度与防范 ——基于LSTM深度学习模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0257-0289.2021.03.017

我国信用债个体违约风险测度与防范 ——基于LSTM深度学习模型

引用
随着中国信用债市场的快速发展,信用债投资者面临的违约风险正在逐步上升.在信息披露不够及时、完整和准确的情况下,如何利用深度学习方法对信用债个体违约风险进行及时跟踪和预测,对于中国债券市场的稳定与健康发展具有重要意义.本文根据信用债违约风险演变的特点,提出采用贝叶斯变分高斯混合估计法、市场指标估计法和违约概率变动趋势倒推估计法之综合的方式估计信用债违约概率;并利用单特征重要性、平均准确率减小、平均不纯度减小以及线性分析相结合的方式筛选获取6组指标组合,采用擅长于处理具有时间相关性的深度学习LSTM方法构建了中国信用债违约风险预测模型.应用训练所得债券违约风险模型进行预测并将预测结果与国内权威评级结果相比较,结果表明:本文模型达到了较高的预测准确率,且与权威评级结果总体相当;本文模型平均评级水平略微偏低,波动性大于权威评级,解释了我国信用债发行评级虚高以及跟踪评级变动未充分反映发行人信用结构性变化的现实情况.根据本文研究结果,提出以下政策建议:监管机构应进一步完善债券发行的信息披露和约束机制,构建违约风险分担机制;投资者须关注违约风险积累和演变的过程以及风险揭示贡献因素大小的时变性特点;发行人则应不断提高公司治理能力以提升运营质量.

信用债违约风险、违约风险分析、LSTM、金融风险深度学习

63

F812.7;TP391.41;TP181

国家自然科学基金;国家自然科学基金

2021-06-03(万方平台首次上网日期,不代表论文的发表时间)

共15页

159-173

相关文献
评论
暂无封面信息
查看本期封面目录

复旦学报(社会科学版)

0257-0289

31-1142/C

63

2021,63(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn