基于改进盖尔-沙普利算法的自动识别系统与双频地波雷达断裂航迹关联
高频地波雷达(HFSWR)可以实现大范围海上船只目标的连续探测,但是海杂波等干扰因素的影响容易造成跟踪航迹的断裂.目前关于地波雷达航迹关联的研究中,通常忽略了航迹断裂的情况,将航迹关联视为二分图匹配问题,这会导致可能将单一目标的断裂航迹判断为多个目标,从而引起目标的误关联.针对上述情况,该文结合模糊综合评判和迭代搜索算法,首次将盖尔-沙普利(GS)算法引入航迹关联领域,并且对其进行改进以满足航迹断裂时的多对多航迹关联情况,提出了改进的盖尔-沙普利(IGS)算法.在该算法中,通过计算航迹之间的模糊综合评判值来得到航迹之间的倾向度序列,再由迭代搜索对航迹进行聚类以获得航迹集群,最后将航迹集群及倾向度序列输入盖尔-沙普利算法来进行数轮博弈以给出关联结果.利用双频率高频地波雷达和船只自动识别系统(AIS)的仿真数据与实测数据进行实验测试,实验结果表明:所提出的算法解决了在航迹断裂情况下的多传感器航迹关联问题,且在密集区域的航迹关联效果优于传统算法.
航迹关联、高频地波雷达、航迹断裂、盖尔-沙普利算法
45
TN958
国家重点研发计划;国家自然科学基金
2023-04-06(万方平台首次上网日期,不代表论文的发表时间)
共8页
1015-1022