基于Sinkhorn距离特征缩放的多约束非负矩阵分解算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11999/JEIT210946

基于Sinkhorn距离特征缩放的多约束非负矩阵分解算法

引用
为了减少原始特征对非负矩阵分解(NMF)算法的共适应性干扰,并提高NMF的子空间学习能力与聚类性能,该文提出一种基于Sinkhorn距离特征缩放的多约束半监督非负矩阵分解算法.首先该算法通过Sinkhorn距离对原始输入矩阵进行特征缩放,提高空间内同类数据特征之间的关联性,然后结合样本标签信息的双图流形结构与范数稀疏约束作为双正则项,使分解后的基矩阵具有稀疏特性和较强的空间表达能力,最后,通过KKT条件对所提算法目标函数的进行优化推导,得到有效的乘法更新规则.通过在多个图像数据集以及平移噪声数据上的聚类实验结果对比分析,该文所提算法具有较强的子空间学习能力,且对平移噪声有更强的鲁棒性.

非负矩阵分解、特征缩放、子空间流形正则化、稀疏约束、聚类

44

TN911.73;TP391

国家重点研发计划;湖北省揭榜制科技项目;湖北省重点研发计划

2022-12-26(万方平台首次上网日期,不代表论文的发表时间)

共11页

4384-4394

相关文献
评论
暂无封面信息
查看本期封面目录

电子与信息学报

1009-5896

11-4494/TN

44

2022,44(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn