基于EWC算法的DDoS攻击检测模型参数更新方法
针对现有基于多层线性感知器(Multi-Layer Perceptron,MLP)神经网络的DDoS攻击检测模型参数更新方法(MLP-UD)易遗忘模型训练原参数所用的DDoS攻击数据集(原数据集)知识、时间空间开销大的问题,该文提出一种基于弹性权重保持(Elastic Weight Consolidation,EWC)算法的模型参数更新方法(EWC-UD).首先,使用K-Means算法计算原数据集聚类簇中心点作为费雪信息矩阵计算样本,有效提升计算样本均匀度与聚类覆盖率,大幅减少费雪信息矩阵计算量,提升参数更新效率.其次,基于费雪信息矩阵,对模型参数更新过程中的损失函数增加2次惩罚项,限制MLP神经网络中重要权重与偏置参数的变化,在保持对原数据集检测性能的基础上,提升对新DDoS攻击数据集的检测准确率.然后基于概率论对EWC-UD方法进行正确性证明,并分析时间复杂度.实验表明,针对构建的测试数据集,EWC-UD方法相较于MLP-UD仅训练新DDoS攻击数据集的更新方法,检测准确率提升37.05%,相较于MLP-UD同时训练新旧DDoS攻击数据集的更新方法,时间开销下降80.65%,内存开销降低33.18%.
分布式拒绝服务;模型参数更新;弹性权重保持算法;多层线性感知器
43
TN918.91;TP393
河南省基础与前沿技术研究计划基金;信息保障技术重点实验室开放基金项目;信息工程大学科研项目
2021-10-28(万方平台首次上网日期,不代表论文的发表时间)
共8页
2928-2935