基于遗传算法的恶意代码对抗样本生成方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11999/JEIT191059

基于遗传算法的恶意代码对抗样本生成方法

引用
机器学习已经广泛应用于恶意代码检测中,并在恶意代码检测产品中发挥重要作用.构建针对恶意代码检测机器学习模型的对抗样本,是发掘恶意代码检测模型缺陷,评估和完善恶意代码检测系统的关键.该文提出一种基于遗传算法的恶意代码对抗样本生成方法,生成的样本在有效对抗基于机器学习的恶意代码检测模型的同时,确保了恶意代码样本的可执行和恶意行为的一致性,有效提升了生成对抗样本的真实性和模型对抗评估的准确性.实验表明,该文提出的对抗样本生成方法使MalConv恶意代码检测模型的检测准确率下降了14.65%;并可直接对VirusTotal中4款基于机器学习的恶意代码检测商用引擎形成有效的干扰,其中,Cylance的检测准确率只有53.55%.

恶意代码检测、机器学习、对抗样本

42

TP309.5(计算技术、计算机技术)

国家自然科学基金61902384,U1836117,U1836113

2020-11-17(万方平台首次上网日期,不代表论文的发表时间)

共8页

2126-2133

相关文献
评论
暂无封面信息
查看本期封面目录

电子与信息学报

1009-5896

11-4494/TN

42

2020,42(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn