基于分类误差一致性准则的自适应知识迁移
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11999/JEIT181054

基于分类误差一致性准则的自适应知识迁移

引用
目前大多数迁移学习方法在利用源域数据辅助目标域数据建模时,通常假设源域中的数据均与目标域数据相关.然而在实际应用中,源域中的数据并非都与目标域数据的相关程度一致,若基于上述假设往往会导致负迁移效应.为此,该文首先提出分类误差一致性准则(CCR),对源域与目标域分类误差的概率分布积分平方误差进行最小化度量.此外,该文提出一种基于CCR的自适应知识迁移学习方法(CATL),该方法可以快速地从源域中自动确定出与目标域相关的数据及其权重,以辅助目标域模型的构建,使其能在提高知识迁移效率的同时缓解负迁移学习效应.在真实图像以及文本数据集上的实验结果验证了CATL方法的优势.

迁移学习、负迁移、概率分布、分类误差一致性规则

41

TP181(自动化基础理论)

国家自然科学基金61802177;江苏省高校自然科学研究面上项目18KJB520020;南京邮电大学引进人才科研启动基金NY219034;江苏省重点研发计划BE2015697

2019-12-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

2736-2743

相关文献
评论
暂无封面信息
查看本期封面目录

电子与信息学报

1009-5896

11-4494/TN

41

2019,41(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn