基于整合移动平均自回归和遗传粒子群优化小波神经 网络组合模型的交通流预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11999/JEIT181073

基于整合移动平均自回归和遗传粒子群优化小波神经 网络组合模型的交通流预测

引用
针对短时交通流数据的非线性和随机性特点,为提高它的预测精度和收敛速度,该文从模型构建和算法两方面提出一种整合移动平均自回归(ARIMA)模型和遗传粒子群算法优化小波神经网络(GPSOWNN)相结合的预测模型和算法.在模型构建方面,将ARIMA模型预测值和灰色关联系数大于0.6的相关性强的前3个时刻的历史数据作为小波神经网络(WNN)的输入,在兼顾历史数据的平稳和非平稳的情况下,进行了模型结构简化.在算法方面,通过遗传粒子群算法对小波神经网络的参数初始值进行最优选取,可使其结果在不易陷入局部最优的条件下加快网络训练收敛速度.实验结果表明,在预测精度方面,该方法的模型明显优于整合移动平均自回归模型和遗传粒子群算法优化小波神经网络,在收敛速度方面,用遗传粒子群算法优化模型明显优于仅用遗传算法优化模型.

短时交通流预测、灰色关联分析法、整合移动平均自回归、遗传粒子群优化小波神经网络

41

TP391;U491.1(计算技术、计算机技术)

国家自然科学基金51577046, 61673153;国防科技计划项目C1120110004, 9140A27020211DZ5102;教育部科学技术研究重大项目313018;安徽省科技计划重点项目1301022036

2019-09-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

2273-2279

相关文献
评论
暂无封面信息
查看本期封面目录

电子与信息学报

1009-5896

11-4494/TN

41

2019,41(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn