基于深度堆栈编码器和反向传播算法的网络安全态势要素识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11999/JEIT181014

基于深度堆栈编码器和反向传播算法的网络安全态势要素识别

引用
网络安全态势要素识别的基础是对态势数据集进行有效的特征提取.针对反向传播(BP)神经网络对海量安全态势信息数据学习时过度依赖数据标签的问题,该文提出一种结合深度堆栈编码器和反向传播算法的网络安全态势要素识别方法,通过无监督学习算法逐层训练网络,在此基础上堆叠得到深度堆栈编码器,利用编码器提取数据集特征,实现了网络的无监督训练.仿真实验验证了该方法能有效提升安全态势感知的效能和准确度.

网络安全态势、反向传播神经网络、堆栈编码器、数据分析

41

TP311(计算技术、计算机技术)

国家自然科学基金61303074

2019-09-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

2187-2193

相关文献
评论
暂无封面信息
查看本期封面目录

电子与信息学报

1009-5896

11-4494/TN

41

2019,41(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn