基于仿射梯度方向直方图特征的目标识别算法
针对基于传统梯度方向直方图特征的目标识别算法(HOG+SVM)在目标发生仿射变化时识别效果较差的问题,该文提出一种基于仿射梯度方向直方图特征的目标识别算法(AHOG+SVM).通过提取多尺度金字塔梯度图像的 HOG 特征,提高了算法的尺度不变性;通过将平面 HOG 栅格拓展至3维 HOG 栅格,并根据目标的世界坐标系与图像坐标系的映射关系将3维 HOG 栅格映射为2维 HOG 仿射栅格,最后对仿射栅格内的 HOG 特征进行仿射逆变换,以达到增强算法旋转不变性与错切不变性的目的.多组实验结果表明,该文提出的算法能够解决在目标识别过程中由尺度变化、旋转变化和错切变化(3D 视角变化)所造成的识别率较低的问题,性能优于 HOG+SVM算法.
目标识别、仿射变换、梯度方向直方图特征、仿射栅格、视角变化、支持向量机
TP391(计算技术、计算机技术)
2013-06-25(万方平台首次上网日期,不代表论文的发表时间)
共7页
1428-1434