双波段全极化SAR图像非监督分类方法及实验研究
该文首先采用H/α分类对像素进行了初始猜测,然后进一步采用Bayes最大似然估计(ML)分类法对像素进行重新归类.不同波段电磁波对地物散射具有不同的属性,因而我们采用双波段全极化SAR数据结合的分类方法,得到了更好的分类结果.SAR图像的相干斑会影响图像的分类准确度和精度.在进行分类处理前,对双波段全极化SAR图像相干斑进行矢量滤波处理.该文使用NASA/JPL实验室在天山地区的实测数据对这些分类算法进行了实验研究.给出了单波段以及双波段全极化SAR分类结果的伪彩色图.其中双波段全极化SAR滤波后数据具有相对最优的分类结果.
全极化SAR、非监督分类、相干斑、矢量滤波
26
TN951
2004-12-23(万方平台首次上网日期,不代表论文的发表时间)
共8页
1738-1745