基于深度图卷积网络的社交机器人识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12178/1001-0548.2021280

基于深度图卷积网络的社交机器人识别方法

引用
提出了一种基于深度图卷积神经网络的社交机器人识别方法.首先,在元数据特征的基础上,引入RoBERTa模型进行博文情绪分类,进一步提取更能区分社交机器人和普通人的情绪多样性特征;同时采用single-pass进行博文聚类,构造博文相似图;在此基础上,提出了在GCNII模型上增加Attention机制的A-GCNII模型,通过捕捉用户元数据特征和社交网络中同一话题下的用户关系结构特征识别社交机器人.在真实新浪微博数据集上进行对比实验的结果表明,该方法在识别准确性和效果上均表现良好.

注意力机制、深度图卷积网络、情绪多样性特征、社交机器人

51

TP391(计算技术、计算机技术)

2022-07-19(万方平台首次上网日期,不代表论文的发表时间)

共9页

615-622,629

相关文献
评论
暂无封面信息
查看本期封面目录

电子科技大学学报

1001-0548

51-1207/T

51

2022,51(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn