改进的多目标粒子群优化算法及其在雷达布站中的应用
为更好地解决多目标问题,提高多目标优化算法的多样性和收敛性,提出一种改进的多目标粒子群优化算法.算法将种群分为多个子种群同时进行优化搜索并改进粒子速度更新公式,扩大Pareto最优解集的覆盖面;利用反三角函数logistic映射初始化种群,使初始种群分布更均匀;并使用时变变异方法对外部档案进行变异,避免陷入局部最优.通过与标准多目标粒子群优化算法(MOPSO)和NSGA-Ⅱ在标准测试函数ZDT1、ZDT2、KUR上的仿真实验对比,验证了该文提出的改进算法的有效性,并将其应用于雷达优化布站.
反三角函数logistics映射、多目标粒子群优化算法、多种群搜索、雷达布站、时变变异
49
TP273(自动化技术及设备)
国家自然科学基金61801093
2020-12-03(万方平台首次上网日期,不代表论文的发表时间)
共6页
806-811