基于空间稀疏编码的MIL算法及刑侦图像分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0548.2019.01.012

基于空间稀疏编码的MIL算法及刑侦图像分类

引用
针对刑侦图像分类问题,提出一种基于空间稀疏编码(SSC)的多示例学习(MIL)算法.首先,利用稠密尺度不变特征转换(SIFT)原理设计一种带有示例位置信息的多示例建模方案,将刑侦图像分类问题转化为MIL问题;然后,基于多样性密度(DD)函数及稀疏编码(SC)理论,设计了一种针对MIL的字典构造方法及空间稀疏编码方案,用于计算多示例包的元数据(metadata);最后,结合大尺度线性支持向量机方法,提出了一种SSC-MIL的MIL新算法.14类真实刑侦图像的对比实验表明,该算法是有效的,且分类精度高于其他方法.

刑侦图像分类、多示例学习、空间稀疏编码、支持向量机

48

TP391(计算技术、计算机技术)

陕西省国际合作交流项目2017KW-013;公安部科技强警项目2014GABJC022;陕西省教育厅项目16JK1691

2019-03-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

68-73

相关文献
评论
暂无封面信息
查看本期封面目录

电子科技大学学报

1001-0548

51-1207/T

48

2019,48(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn