不完整数据集的MFR辐射源识别方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0548.2019.01.007

不完整数据集的MFR辐射源识别方法研究

引用
该文提出一种基于随机森林的不完整数据集的多功能雷达(MFR)辐射源识别方法,该方法在MFR辐射源波形单元识别框架基础上,首先对参数缺失的先验知识集进行多重划分,得到多个不含缺失参数的样本子集,然后删减冗余子集并利用随机森林算法对各个子集构建弱分类器,最后根据弱分类器对识别结果贡献率的不同,进行权值设定,得到最终的识别模型.仿真实验证实了提出的MDRF-WA方法能够提高少量先验知识条件下波形单元识别的准确率和鲁棒性,降低计算成本.

不完整数据集、多功能雷达、多重划分、随机森林、波形单元

48

TN958.92

2019-03-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

39-45

相关文献
评论
暂无封面信息
查看本期封面目录

电子科技大学学报

1001-0548

51-1207/T

48

2019,48(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn