基于马尔科夫链的轻轨乘客轨迹预测新算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0548.2018.05.013

基于马尔科夫链的轻轨乘客轨迹预测新算法

引用
利用重庆轻轨的乘客刷卡数据,分析了乘客出行特征,并提出了一种基于马尔科夫链的乘客轨迹预测算法.该算法首先利用贝叶斯分类器对乘客下次出行轨迹进行分类;然后,根据乘客最近一次出行轨迹与其常住地的关系,预测其下次出行轨迹.在真实轻轨交通数据集上的实验结果表明,该算法对乘客出行轨迹的预测效果优于LTMT、RNN和2-MC;同时,该算法基于大数据处理框架Spark进行编码,减少了运行时间.

贝叶斯分类、马尔科夫链、轻轨预测、出行轨迹

47

TN97

国家自然科学基金U1333113;四川省科技支撑计划2014GZ0111

2018-11-06(万方平台首次上网日期,不代表论文的发表时间)

共6页

720-725

相关文献
评论
暂无封面信息
查看本期封面目录

电子科技大学学报

1001-0548

51-1207/T

47

2018,47(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn