基于levy飞行优化BOA-BP网络的电池SOC估计
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16157/j.issn.0258-7998.222834

基于levy飞行优化BOA-BP网络的电池SOC估计

引用
目前电动汽车动力输出的来源主要是动力电池,其荷电状态(State of Charge,SOC)表示电池的剩余电量情况,精确估算SOC对于电池的使用安全有重要意义.将蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)进行改进并用于优化BP神经网络估算动力电池SOC,解决了普通BP网络估计SOC时遇到的训练时间长、收敛慢、精度较低、易陷入局部最优解的问题;同时提升了全局搜索速度,选取电压和电流为输入变量、SOC为输出变量,根据误差的大小调整神经网络的权值和阈值.仿真结果表明,优化后得到的SOC估计结果误差率控制在1.1%以内,该方法寻优速度快,具有更好的鲁棒性.

荷电状态估计、蝴蝶优化算法、BP神经网络、Levy飞行

49

TP13(自动化基础理论)

未央区科技计划项目202016

2023-04-25(万方平台首次上网日期,不代表论文的发表时间)

共4页

88-91

相关文献
评论
暂无封面信息
查看本期封面目录

电子技术应用

0258-7998

11-2305/TN

49

2023,49(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn