结合拆分注意力机制和下一次预期观察的视觉导航
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13382/j.jemi.B2205862

结合拆分注意力机制和下一次预期观察的视觉导航

引用
针对深度强化学习视觉导航算法因导航场景变化而导致导航精度下降,影像匹配的实时性和可靠性降低的问题,提出一种融合拆分注意力机制和下一次预期观测(NEO)的视觉导航模型.首先使用ResNest50骨干网络提取当前状态和目标状态的特征以降低网络冗余,利用跨阶段部分连接CSP强化捕获浅层目标特征信息以增强模型的学习能力.然后提出改进的损失函数,使得推理网络更加接近于真实后验,从而智能体能在当前环境下做出最佳决策,进一步提升不同场景下模型的导航精度.在AVD数据集和AI2-THOR场景进行训练及测试,实验结果表明,本文算法导航精度高达96.8%,平均SR提升约3%,平均SPL提升约6%,可以满足导航精度和实时匹配的要求.

视觉导航、深度强化学习、拆分注意力机制、下一次预期观测

37

TP242;TP391.41(自动化技术及设备)

贵州省科学技术基金;贵州省联合资金黔科合LH字号;贵州大学学术新苗培养;创新探索专项;贵州省科技计划项目

2023-07-12(万方平台首次上网日期,不代表论文的发表时间)

共10页

96-105

相关文献
评论
暂无封面信息
查看本期封面目录

电子测量与仪器学报

1000-7105

11-2488/TN

37

2023,37(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn