改进YOLOv5s的风力涡轮机表面缺陷检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13382/j.jemi.B2205857

改进YOLOv5s的风力涡轮机表面缺陷检测

引用
针对传统方式检测风力涡轮机表面缺陷时出现的精度不足、泛化性较差问题,提出了一种改进YOLOv5s的风力涡轮机表面缺陷检测模型.在网络结构方面,首先在主干特征提取网络引入改进的MobileNetv3网络,用于协调并平衡模型的轻量化和精度关系;其次采用BiFPN式的融合方式,增强神经网络的多尺度适应能力,提高融合速度和效率;最后为轻量化的自适应调节特征权重,运用ECAnet通道注意力机制,进一步提高神经网络的特征提取能力.在损失函数方面,将边框回归的损失函数修改为αIoU Loss,进一步提升了 bbox回归精度.实验结果表明,基于YOLOv5s的改进算法可以在复杂环境下快速准确地识别风机表面的缺陷目标,能够满足实时目标检测的实际应用需求.

风力涡轮机、YOLOv5s、轻量化目标检测、注意力机制、多尺度融合

37

TP391.41;TM315(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;江苏省一流本科课程《电路分析基础》无锡学教学改革重点课题项目

2023-07-12(万方平台首次上网日期,不代表论文的发表时间)

共10页

40-49

相关文献
评论
暂无封面信息
查看本期封面目录

电子测量与仪器学报

1000-7105

11-2488/TN

37

2023,37(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn