基于深度置信网络的轴承剩余使用寿命预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13382/j.jemi.B2104050

基于深度置信网络的轴承剩余使用寿命预测

引用
针对精密电子、塑形成型等高速高精加工过程滚动轴承的剩余使用寿命预测建模中存在样本少、标注难度大等问题,引入深度置信网络,融合无监督与有监督微调学习方法开展滚动轴承剩余使用寿命预测研究.将滚动轴承的振动数据特征作为输入、剩余使用寿命作为输出,以能量函数量化特征准确性的概率分布作为基本组成部件,部件的上一层特征输出作为下一层的输入,将多个这样的部件首尾相接,构建滚动轴承剩余使用寿命预测模型.通过原始数据的无监督预训练得到模型中各个单元的初始参数,然后利用剩余使用寿命标签数据进行模型的有监督微调,进一步提高模型预测的准确性.实验结果表明,所提出的方法能够对滚动轴承的剩余使用寿命进行预测,与支持向量回归(SVR)和主成分分析-深度置信网络(PCA-DBN)方法进行比较,预测误差分别减少28.48%、5.57%,该方法在现场预测方面,具有更高的预测准确度,而且本方法还能减少对专家知识的依赖,模型的泛化能力更强.

剩余使用寿命预测;深度置信网络;特征自提取;能量概率模型

35

TH133.3;TN05

广东省重点领域研发计划项目20198010154001

2022-03-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

124-129

相关文献
评论
暂无封面信息
查看本期封面目录

电子测量与仪器学报

1000-7105

11-2488/TN

35

2021,35(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn