基于卷积神经网络和心电QRS波群的身份识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13382/j.jemi.B2002887

基于卷积神经网络和心电QRS波群的身份识别

引用
利用生物特征进行身份识别是目前模式识别领域的研究热点之一,由于人体的心电信号较为稳定且容易获取,因此利用心电进行身份识别得到了广泛的关注.传统基于心电的身份识别算法需要预先提取特征,然后进行模式识别,处理流程比较复杂,且容易受到噪声的影响.考虑心电QRS波群具有相对稳定的特点,利用QRS波群进行身份识别.首先对心电信号进行小波阈值降噪,然后提取QRS波群,将其转换为二值图,最后输入到卷积神经网络进行身份识别.通过几种不同超参数的卷积神经网络的计算比较,发现本文所述方法的最高准确率可达98.2%.此外,也对比了其他典型心电身份识别方法,结果表明,所述方法的识别准确率高于其他算法.

心电图、QRS波群、身份识别、卷积神经网络

34

R318.6(医用一般科学)

国家自然科学基金11564006,11864007

2020-09-04(万方平台首次上网日期,不代表论文的发表时间)

共10页

1-10

相关文献
评论
暂无封面信息
查看本期封面目录

电子测量与仪器学报

1000-7105

11-2488/TN

34

2020,34(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn