基于Inception-DLSTM双通道的滚动轴承故障诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19651/j.cnki.emt.2211307

基于Inception-DLSTM双通道的滚动轴承故障诊断方法

引用
卷积神经网络(CNN)对空间特征具有敏感性,而Inception相比CNN具备多尺度提取特征优势;长短时记忆网络(LSTM)对时间特征具有敏感性,而深层长短时记忆网络(DLSTM)比LSTM具备更深层次提取特征优势.为了多尺度充分提取滚动轴承振动信号在空间和时间上的特征,实现滚动轴承故障诊断,提出了一种Inception通道和DLSTM通道结合的Inception-DLSTM双通道滚动轴承故障诊断模型.对于Inception通道,把轴承振动信号经过小波变换生成的时频图作为输入,利用Inception网络多尺度提取时频图的空间特征信息;对于DLSTM通道,直接把轴承振动信号作为输入,利用DLSTM网络充分提取信号的时间特征信息.然后把两个通道输出的特征信息连接成一个时空特征向量,最后利用分类器进行轴承故障诊断识别.对轴承故障数据进行对比实验可得,Inception-DLSTM双通道的故障识别准确率可达100%,具备良好的故障诊断和特征提取能力.

Inception-DLSTM双通道、滚动轴承、故障诊断、空间特征、时间特征

46

TH133.33

四川科技厅重点研发项目;博士后科学基金

2023-07-11(万方平台首次上网日期,不代表论文的发表时间)

共7页

53-59

相关文献
评论
暂无封面信息
查看本期封面目录

电子测量技术

1002-7300

11-2175/TN

46

2023,46(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn