含类信息的极限学习机自动编码器特征学习方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19651/j.cnki.emt.2210187

含类信息的极限学习机自动编码器特征学习方法

引用
极限学习机自动编码器(ELM-AE)将极限学习机(ELM)技术与自动编码器(AE)结合,可以无监督学习数据特征且克服了参数迭代调整的昂贵时间消耗.然而,以最小化重构误差为目标的ELM-AE并不能有效利用分类问题中的数据类别信息,导致特征的类别可分性较差.针对此现象,本文提出一种面向数据分类的含类信息极限学习机自编码(CELM-AE)特征学习方法,该方法将投影特征向量的类间离散度与类内相似度限制到ELM-AE的目标函数中,且可通过解析算法求得更具类别分辨力的最优数据表示.对6种UCI数据集分别使用基于CELM-AE、ELM-AE和AE的特征表示进行分类实验,结果表明,CELM-AE得到的数据特征在两种分类器(ELM/KNN)下的分类精度与稳定性表现均优于ELM-AE与AE,且时间代价很小,说明了 CELM-AE在提取可分性数据特征表示方面的优势.

极限学习机、自动编码器、特征学习、数据分类

45

TP3(计算技术、计算机技术)

山西省基础研究计划资助项目;山西省基础研究计划资助项目;山西省基础研究计划资助项目;山西省基础研究计划资助项目;国家自然科学基金;山西省回国留学人员科研项目;山西省回国留学人员科研项目

2022-11-10(万方平台首次上网日期,不代表论文的发表时间)

共9页

71-79

相关文献
评论
暂无封面信息
查看本期封面目录

电子测量技术

1002-7300

11-2175/TN

45

2022,45(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn