基于双路FNN网络的固体火箭发动机壳体内缝检测方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19651/j.cnki.emt.2107115

基于双路FNN网络的固体火箭发动机壳体内缝检测方法研究

引用
火箭发动机壳体内部螺纹连接处缝隙的检测精度是衡量其质量的重要指标,由于发动机壳体内表面形貌复杂,因此内缝质量仅靠人工检测不仅效率低而且可靠性差.提出一种基于FNN网络的内缝视觉检测方法,以灰度共生矩阵和PCA算法构造图像的特征参数,训练FNN网络,将火箭发动机壳体内缝的粗加工面与精加工面进行分类,分类识别率98.8%;然后,对两类情况做不同的图像处理,用Sobel算子找到缝隙边缘;最后,通过标定进行包括采集原始图像误差、直线拟合误差的系统误差修正,完成内缝宽度精确测量.实验表明,该方法稳定可靠,能够实现0.1~0.6 mm范围内±0.02mm的识别精度.该方法实现了火箭发动机壳体内部螺纹连接处的高精度测量,为实现产品高效自动生产和质量检测提供了技术保障.

发动机内缝测量;灰度共生矩阵;PCA;神经网络

44

TP2(自动化技术及设备)

辽宁省自然科学基金2019_KF_01_11

2021-12-27(万方平台首次上网日期,不代表论文的发表时间)

共7页

143-149

相关文献
评论
暂无封面信息
查看本期封面目录

电子测量技术

1002-7300

11-2175/TN

44

2021,44(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn