基于季节分类和RBF自适应权重的并行组合电价预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19651/j.cnki.emt.2004158

基于季节分类和RBF自适应权重的并行组合电价预测

引用
电价预测在世界能源市场建设中具有重要意义,基于季节性分类,提出了一种由自回归移动平均模型(ARIMA)、多层前馈神经网络(BP神经网络)和支持向量回归模型(SVR)组成的并行组合电价预测方法.为了充分利用不同方法的优势,将ARIMA、BP、SVR分别应用于日前电价预测中,通过径向基神经网络(RBF)对4个不同季节的3个预测值进行非线性拟合,得到最终的预测结果.所提方法的创新点在于对于每个季节都有特定的预测模型,不同预测方法之间非线性权重值随时间变化而变化,与传统的回归组合预测方法和季节非分类情况相比,其仿真结果表明所提方法具有更好的适应性和更高的预测精度.

日前电价预测、季节分类、自适应权重、并行组合法、RBF拟合

43

TM93

2020-09-29(万方平台首次上网日期,不代表论文的发表时间)

共5页

101-105

相关文献
评论
暂无封面信息
查看本期封面目录

电子测量技术

1002-7300

11-2175/TN

43

2020,43(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn