考虑用电行为分析的电力用户用电预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19651/j.cnki.emt.1903225

考虑用电行为分析的电力用户用电预测研究

引用
挖掘电力用户用电特征,有助于提高负荷预测精度,从而为制定合理的电力系统经济调度策略提供理论依据.针对传统的模糊C均值(fuzzy c-means algorithm,FCM)聚类算法的聚类数需要人工试凑的问题,提出了自适应FCM方法,以达到自动调整参数获得最佳聚类数的目的.针对核极限学习机(kernel extreme learning mechine,KELM)求逆过程计算量大的问题,采用cholesky分解法求解KELM的输出权值,降低了计算时间.采用自适应FCM对电力用户进行聚类,然后对每类用户采用改进的KELM算法进行负荷预测.实验结果表明,相同预测方法下,基于聚类的负荷预测精度高于不聚类时的负荷预测;实验结果验证了所提聚类方法与用户实际用电行为相符,具有准确性;相比于传统的KELM算法,改进KELM算法耗时更少精度更高.

模糊C均值、用电行为、KELM、负荷、预测

43

TM715;TM74(输配电工程、电力网及电力系统)

2020-05-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

74-79

相关文献
评论
暂无封面信息
查看本期封面目录

电子测量技术

1002-7300

11-2175/TN

43

2020,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn