基于LSTM-ICNN的网络情报信息技术研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19651/j.cnki.emt.1902860

基于LSTM-ICNN的网络情报信息技术研究

引用
传统的短本文分类方法不仅会造成特征向量的高稀疏性及维度灾难,而且还不能准确表达语序信息,采用改进卷积神经网络(ICNN)能够对文本特征进行有效挖掘,长短期记忆神经网络(LSTM)能够实现语序的准确表达,为此提出了基于LSTM-ICNN的短文本分类技术研究.首先,为了提高传统卷积神经网络的特征提取能力,引入了三种卷积核因子,提高了短文本特征信息的获取量.然后,由于LSTM具有优秀的字词序列语义表达效果,所以提出了基于LSTM-ICNN的短文本分类方法,该方法解决了短文本分类时特征量较少及语序表达不准确的问题.实验对比分析显示,在相同条件下,相比于其他传统的分类算法,LSTM-ICNN的短文本分类准确度最高,而且与现有研究成果相比,LSTM-ICNN方法具有明显优势,验证了本文所提方法的有效性和实用性.

卷积神经网络、长短期记忆神经网络、短文本、分类、深度学习

42

TP183;TP391.1;TN0(自动化基础理论)

2019-12-03(万方平台首次上网日期,不代表论文的发表时间)

共5页

144-148

相关文献
评论
暂无封面信息
查看本期封面目录

电子测量技术

1002-7300

11-2175/TN

42

2019,42(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn