10.12122/j.issn.1673-4254.2024.01.10
多期相CT合成辅助的腹部多器官图像分割
目的 提出并探讨使用多期相CT合成辅助腹部多器官分割方法.方法 提出多期相CT合成辅助腹部多器官分割,多期相CT能够充分提供同一器官不同的图像细节,从而为分割模型提供充分的全面的语义信息,提升腹部多个器官分割的性能.提出基于多头自注意力感知的多期相CT合成方法,引入基于多头自注意力机制的Transformer模块,提升合成网络捕捉长距离语义信息的能力,扩大网络的感受野,并且引入感知损失,在特征层面对合成图像与真实图像特征之间的差异最小化,与Transformer模块有协同作用,从而合成出更清晰、更高质量的多期相CT图像.结果 使用南方医院的多期相CT数据集训练模型.其中用526例多期相CT训练合成模型,利用动脉期增强动脉CT(A.CECT)合成出平扫CT(NECT)、静脉期CECT(V.CECT)、延迟期CECT(D.CECT)的平均最大化绝对误差(MAE)分别为19.192±3.381、20.140±2.676、22.538±2.874,结合统计学对比,本文方法优于对比的其他图像合成方法(P<0.05).多期相CT合成辅助的腹部多器官分割方法验证在内部验证集上进行验证平均Dice系数(DSC)为0.847,在外部验证集上进行验证平均DSC为0.823.结论 本文方法能够合成出高质量的多期相CT图像以有效缓解不同期相CT之间存在的配准无法解决的误差问题,同时提高腹部13器官的分割性能,具有良好的泛化性能.
腹部多器官分割、多期相CT合成、对抗生成网络、Transformer
44
TP391.41;TN911.73;TP183
2024-02-01(万方平台首次上网日期,不代表论文的发表时间)
共10页
83-92