10.12122/j.issn.1673-4254.2023.02.16
基于人工智能技术的鼻咽癌风险预测模型的构建与评价
目的 利用人工智能(AI)技术筛选鼻咽癌(NPC)患者死亡的危险因素,并构建风险预测模型.方法 基于SEER数据库(1973~2015)NPC患者的临床数据;采用SPSS 25.0软件对数据进行处理,并按7:3随机分为建模组和验证组;利用R软件对建模组数据采用极限梯度提升(XGBoost)、决策树(DT)、套索算法(LASSO)与随机森林(RF)等4种AI算法筛选NPC患者死亡的危险因素,并构建风险预测模型.用C-指数(C-index)、决策曲线分析(DCA)、受试者工作特征曲线(ROC)和校准曲线(CC)等4种方式对模型进行内部评价;利用验证组数据和搜集的临床数据对模型进行内部验证与外部验证.结果 共纳入2116例NPC患者的临床数据(建模组1484例;验证组632例);建模组数据筛选影响NPC患者死亡的危险因素有年龄、种族、性别、Stage_M、Stage_T和Stage_N,利用其构建NPC风险预测模型的内部评价的C-index为0.76、ROC曲线下面积AUC=0.74、DCA净获益率为9%~93%,内部验证的C-index为0.740、ROC曲线下面积AUC=0.749、DCA净获益率为3%~89%,且CC高度一致;外部验证数据的C-index为0.943;DCA净获益率为(3%~97%);ROC曲线下面积AUC=0.851;而CC显示预测值与真实值之间具有良好的一致性.结论 性别、年龄、种族以及TNM分期是NPC患者死亡的危险因素,而NPC风险预测模型具有准确性、一致性、区分性与实用性等价值.
鼻咽癌、预测模型、列线图、危险因素、人工智能
43
R735.3;TP391.41;TP18
安徽省高等学校自然科学研究重点项目;蚌埠医学院厅级重点实验室开放课题基金项目
2023-03-24(万方平台首次上网日期,不代表论文的发表时间)
共9页
271-279