基于人工智能技术的鼻咽癌风险预测模型的构建与评价
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12122/j.issn.1673-4254.2023.02.16

基于人工智能技术的鼻咽癌风险预测模型的构建与评价

引用
目的 利用人工智能(AI)技术筛选鼻咽癌(NPC)患者死亡的危险因素,并构建风险预测模型.方法 基于SEER数据库(1973~2015)NPC患者的临床数据;采用SPSS 25.0软件对数据进行处理,并按7:3随机分为建模组和验证组;利用R软件对建模组数据采用极限梯度提升(XGBoost)、决策树(DT)、套索算法(LASSO)与随机森林(RF)等4种AI算法筛选NPC患者死亡的危险因素,并构建风险预测模型.用C-指数(C-index)、决策曲线分析(DCA)、受试者工作特征曲线(ROC)和校准曲线(CC)等4种方式对模型进行内部评价;利用验证组数据和搜集的临床数据对模型进行内部验证与外部验证.结果 共纳入2116例NPC患者的临床数据(建模组1484例;验证组632例);建模组数据筛选影响NPC患者死亡的危险因素有年龄、种族、性别、Stage_M、Stage_T和Stage_N,利用其构建NPC风险预测模型的内部评价的C-index为0.76、ROC曲线下面积AUC=0.74、DCA净获益率为9%~93%,内部验证的C-index为0.740、ROC曲线下面积AUC=0.749、DCA净获益率为3%~89%,且CC高度一致;外部验证数据的C-index为0.943;DCA净获益率为(3%~97%);ROC曲线下面积AUC=0.851;而CC显示预测值与真实值之间具有良好的一致性.结论 性别、年龄、种族以及TNM分期是NPC患者死亡的危险因素,而NPC风险预测模型具有准确性、一致性、区分性与实用性等价值.

鼻咽癌、预测模型、列线图、危险因素、人工智能

43

R735.3;TP391.41;TP18

安徽省高等学校自然科学研究重点项目;蚌埠医学院厅级重点实验室开放课题基金项目

2023-03-24(万方平台首次上网日期,不代表论文的发表时间)

共9页

271-279

相关文献
评论
暂无封面信息
查看本期封面目录

南方医科大学学报

1673-4254

44-1627/R

43

2023,43(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn