基于深度循环神经网络的地铁供电系统负荷预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11985/2022.04.033

基于深度循环神经网络的地铁供电系统负荷预测

引用
随着国民经济持续发展、城市化进程加快,地铁建设也随之快速发展,地铁供电系统也相应地日益庞大,地铁供电系统负荷已然成为城市电力系统负荷的重要组成部分.由于地铁供电系统负荷所呈现的移动性、时变性、非线性等特点,对地铁供电系统负荷预测技术的研究越来越重要.首先对于地铁供电系统负荷预测开展研究,考虑了地铁历史负荷、地铁换乘站、地铁地上/地下形式、客流量、天气、温度等多维度因素,再基于堆叠式降噪自动编码器对多维度因素进行特征学习,基于适用于处理序列性质非线性问题的深度循环神经网络,提出了一种地铁供电系统负荷预测方法.最后通过南京地铁的实际运行数据验证了所提预测方法的有效性和优越性,该方法对于地铁供电系统短期和中长期负荷预测均有较好的预测效果.针对南京地铁待建的地铁站,进行中长期负荷预测,为其主站定容提供参考依据.

地铁供电系统、负荷预测、深度学习、多维度因素、深度循环神经网络

17

TM744(输配电工程、电力网及电力系统)

南京电力设计研究院资助项目SGTYHT/18-JS-206

2023-02-15(万方平台首次上网日期,不代表论文的发表时间)

共9页

309-317

相关文献
评论
暂无封面信息
查看本期封面目录

电气工程学报

2095-9524

10-1289/TM

17

2022,17(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn