基于iCEEMDAN和迁移学习的锂离子电池SOH估计
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11985/2022.04.002

基于iCEEMDAN和迁移学习的锂离子电池SOH估计

引用
目前数据驱动的锂离子电池健康状态(State of health,SOH)估计方法已成为研究热点,但实车应用中产生的小样本数据问题会导致数据驱动模型精度低、泛化能力差等问题,由此提出一种基于特征模态分解及迁移学习的 SOH 估计方法.首先,从电池小样本数据片段中提取健康特征,通过改进的自适应噪声完备集合经验模态分解(Improved complete ensemble empirical mode decomposition with adaptive noise,iCEEMDAN)分离出本征模态分量(Intrinsic mode function,IMF)与残余分量(Res)两类包含不同特征信息的分量;然后将分解优化后的特征信息分别通过LSTM网络和BP网络进行针对性训练,构建特征信息与电池SOH的关联模型;最后将模型迁移至其他数据集估计电池的SOH.基于NASA公开电池数据集的试验结果表明,所提方法具有高准确度及泛化能力,估计的平均绝对误差(MAE)和方均根误差(RMSE)分别为2.34%和3.05%,迁移后的MAE和RMSE分别为1.13%和1.68%.

健康状态、iCEEMDAN、数据驱动、迁移学习、小样本数据

17

TM912

人工智能与数字经济广东省实验室深圳开放课题资助项目GML-KF-22-19

2023-02-15(万方平台首次上网日期,不代表论文的发表时间)

共9页

2-10

相关文献
评论
暂无封面信息
查看本期封面目录

电气工程学报

2095-9524

10-1289/TM

17

2022,17(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn