基于蒙特卡洛和SH-AUKF算法的锂电池SOC估计
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11985/2022.03.008

基于蒙特卡洛和SH-AUKF算法的锂电池SOC估计

引用
针对锂离子电池荷电状态(State of charge,SOC)估计精度低的问题,将Sage-Husa自适应算法与无迹卡尔曼滤波算法相结合,提出了一种可以对系统噪声进行不断更新和修正的自适应滤波新算法——SH-AUKF算法.在动态应力测试(Dynamic stress test,DST)工况下,采用无迹卡尔曼滤波(Unscented Kalman filter,UKF)、自适应无迹卡尔曼滤波(Adaptive unscented Kalman filter,AUKF)和SH-AUKF三种算法分别对SOC进行估计.结果表明,SH-AUKF算法估计SOC的误差最小,估计精度最高.与UKF相比,SH-AUKF算法的估计精度提高了45.4%;与AUKF相比,SH-AUKF算法的估计精度提高了14.3%.为了进一步降低噪声干扰的偶然性和突发性对SOC估计的影响,在估计过程中加入了蒙特卡洛采样方法.结果表明,融合了蒙特卡洛方法的SH-AUKF算法估计SOC时,估计误差区间仅为±1×10?3,有效提高了估计精度.

锂离子电池、荷电状态、Sage-Husa、蒙特卡洛

17

TM911

国家重点研发计划;陕西省重点研发计划;陕西省重点研发计划-电动汽车能量管理关键技术与高密度动力锂电池开发资助项目

2022-11-02(万方平台首次上网日期,不代表论文的发表时间)

共10页

66-75

相关文献
评论
暂无封面信息
查看本期封面目录

电气工程学报

2095-9524

10-1289/TM

17

2022,17(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn